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All neuroimaging packages can handle group analysis with t-tests or general linear modeling (GLM). However,
they are quite hamstrungwhen there are multiple within-subject factors or when quantitative covariates are in-
volved in the presence of a within-subject factor. In addition, sphericity is typically assumed for the variance–co-
variance structure when there are more than two levels in a within-subject factor. To overcome such limitations
in the traditional AN(C)OVA and GLM, we adopt a multivariate modeling (MVM) approach to analyzing neuro-
imaging data at the group level with the following advantages: a) there is no limit on the number of factors as
long as sample sizes are deemed appropriate; b) quantitative covariates can be analyzed together with within-
subject factors; c) when awithin-subject factor is involved, three testingmethodologies are provided: traditional
univariate testing (UVT) with sphericity assumption (UVT-UC) and with correction when the assumption is vio-
lated (UVT-SC), and within-subject multivariate testing (MVT-WS); d) to correct for sphericity violation at the
voxel level, we propose a hybrid testing (HT) approach that achieves equal or higher power via combining tradi-
tional sphericity correction methods (Greenhouse–Geisser and Huynh–Feldt) with MVT-WS.
To validate the MVMmethodology, we performed simulations to assess the controllability for false positives and
power achievement. A real FMRI dataset was analyzed to demonstrate the capability of the MVM approach. The
methodology has been implemented into an open source program 3dMVM in AFNI, and all the statistical tests can
be performed through symbolic codingwith variable names instead of the tedious process of dummy coding. Our
data indicates that the severity of sphericity violation varies substantially across brain regions. The differences
among various modeling methodologies were addressed through direct comparisons between the MVM ap-
proach and some of the GLM implementations in the field, and the following two issues were raised: a) the im-
proper formulation of test statistics in some univariate GLM implementations when a within-subject factor is
involved in a data structure with two or more factors, and b) the unjustified presumption of uniform sphericity
violation and the practice of estimating the variance–covariance structure through pooling across brain regions.

Published by Elsevier Inc.
Introduction

In the research endeavor towards addressing a specific hypothesis,
conventional voxel-wise FMRI group analysis is a vital step that allows
the investigator to make a general statement at the population level.
In the typical methodology for such a leap of generalization from indi-
vidual results to the group level one takes the effect estimates from in-
dividual subject analysis and treats them as raw data in a general linear
model (GLM), with an underlying assumption that those effect esti-
mates are either equally reliable across all subjects or with negligible
within-subject variability relative to the between-subjects counterpart.
The effect estimates are regression coefficients (usually referred to as β
values) or linear combinations. And the GLMs traditionally include
Student's t-tests (i.e., paired, one- and two-sample versions), multiple
regression, and AN(C)OVA.

The difficulty of modeling multi-way AN(C)OVA

For categorical variables, the dichotomy of between-subjects and
within-subject factors is necessary because the levels (or groups) of
the former can be considered independent while this is generally not
true for the latter. Such differentiation necessitates accounting for the
correlations among the levels of a within-subject factor, and leads to
the different treatments between two-sample and paired t tests as
well as numerous types of AN(C)OVA in terms of the number of explan-
atory variables and their types (categorical or quantitative, between- or
within-subject). The computations for Student's t-tests andmultiple re-
gression are quite straightforward and economical. In contrast, under
the conventional ANOVA platform with rigid data structure (i.e., equal
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numbers of subjects across groups and no missing data), one calculates
the sum of squares (SS) for each effect term through simplified formu-
las, and then obtains their respective ratios as F-statistics for significance
testing. The process is computationally efficient through the SS formu-
las, but each ANOVA formulation with different factor types or with an
extra factor leads to a different model framework because of the unique
variance partitioning involved. This can become very tedious especially
when unique random effects have to be accounted for in the case of
within- or intra-subject (repeated- or longitudinal-measures) factors.
For example, a two-way within-subject ANOVA is more complicated
than its one-way counterpart in formulating the F-statistics. Because
of this limitation, the ANOVA methodology adopted in AFNI (Cox,
1996) is currently constrained to up to four fixed-effects factors through
separate programs 3dANOVA, 3dANOVA2, 3dANOVA3, and GroupAna.

As an alternative, GLM is more flexible than the ANOVA platform at
the cost of additional computation complexity. For example, GLM can ac-
commodate unequal numbers of subjects across groups. However, unlike
the efficient SS computation under the ANOVA framework, each categor-
ical variable underGLM is dummycodedbymultiple indicators. The com-
plication of the coding process occurs when a within-subject factor is
involved, and the subjects are also required to be entered in the model
through dummy coding, to account for the random effects (intercepts).
If more than one within-subject factor is formulated under GLM, all the
possible interactions between those within-subject factors and subjects
except the one with the highest order are also required. It is because of
this complication that the GLM implementations in both FSL (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki) and SPM (http://www.fil.ion.ucl.ac.uk/spm)
can properly handle only one within-subject factor, and statistical tests
involving any between-subjects factors cannot be validly performed in
the same model because of the complexity in variance partitioning.
Even if the software allows for more than one within-subject factor
(e.g., two- or three-way within-subject ANOVA), the results would be in-
correct as no differentiation in error partition is implemented. In addition,
it is invalid under their GLM implementations to test the effect at a specif-
ic factor level (e.g., male group, positive condition, or negative condition
of the female group) or a level combination whose weights do not
sum to zero (e.g., sum of positive and negative conditions) because
the residuals are used in variance estimation. In contrast, GLM Flex
(McLaren et al., 2011) is aMatlab-based package that allows the han-
dling of such cases without the inflated false positive rate (FPR) for
group comparisons that occurred with the previous alternative
Flexible Factorial Design in SPM and its comparable imple-
mentation within the General Linear Model setup in the group
analysis scheme FEAT of FSL. In addition, GLM Flex can model inter-
actions among up to five fixed-effects variables that users encode
with dummy variables.
Sphericity violation

The traditional approach to handling a within-subject factor with
more than two levels (e.g., one-way within-subject ANOVA) is suscepti-
ble to the violation of a correlational assumption: sphericity or compound
symmetry. The compound symmetry assumption requires that the vari-
ances and covariances of the different levels of the within-subject factor
are homogeneous (identical), while the sphericity assumption, an exten-
sion of the homogeneity of variance assumption in between-subjects
ANOVA, states that all the variances of the level differences are equal.
Note that compound symmetry is also known as uniformity, intraclass
correlation model, or exchangeable correlation structure, and sphericity
is sometimes referred to as circularity. Although sphericity is the neces-
sary and sufficient condition for the validity of the F-statistics in tradition-
al within-subject ANOVAs, compound symmetry is much easier to verify,
and is a special case of the sphericity assumption, thus is a sufficient but
not necessary condition: If compound symmetry is satisfied, then sphe-
ricity is met. On the other hand, sphericity almost means compound
symmetry: it is possible, but rare, for data to violate compound symme-
try even when sphericity is valid.

Data variability and correlations across conditions at the group level
arise because of neurological basis and intrinsic heterogeneity across sub-
jects. For example, a subject who responds more strongly than the group
average to the positive condition may also have a higher response to the
negative or neutral condition. However, the correlation (proportion of
shared or overlapping variance) between the positive andnegative condi-
tions is not necessarily the same as between positive and neutral condi-
tions, and between negative and neutral conditions. The deviation from
sphericity could lead to inflated significance. However, the traditional cor-
rection through adjusting for the degrees of freedom has never been
adopted in the neuroimaging packages. Instead one proposed method
was to estimate the correlations through pooling across all the “active”
voxels in the whole brain (Glaser and Friston, 2007), which has been
adopted at both individual and group levels in SPM. However, the pre-
sumption of a global correlation structure has not been systematically
validated.

The difficulty of modeling quantitative covariates together with within-
subject factors

Due to experimental constraints, samples (trials or subjects) are not
always randomly manipulable. For example, it is unrealistic to expect
each subject to respond to all trials with the same reaction time (RT)
or to have the same average RT. The resulting variability can bemodeled
through amplitude correlation (or parametric modulation) at the indi-
vidual trial level, while across-subjects variations can be controlled or
accounted for in group analysis through the incorporation of relevant
quantitative covariates (e.g., age, IQ, RT, etc.). On other occasions, the as-
sociation itself between the brain response and a quantitative covariate
is of interest, and necessitates considering it as an explanatory variable.

If a model contains only quantitative covariates or if the only cate-
gorical explanatory variables are between-subjects factors, modeling
quantitative covariates is relatively easy and straightforward through
a univariate regression or general linear model (GLM). On the other
hand, the classical ANCOVA usually includes at least one between-
subjects factor as well as one or more quantitative covariates. It is of
note that the historical incarnation of ANCOVA emphasizes additivity
and does not consider any interactions between factors and quantitative
covariates. This is the reason for the notion of homogeneity or parallel-
ism of slopes, which is totally unnecessary when the interactions are in-
cluded. Furthermore, the concept of ANCOVA is basically subsumed
under GLM; if not for the legacy usage, the ANCOVA nomenclature can
be fully abandoned to avoid confusion. When a within-subject factor
is involved, the situation becomes complicated under the univariate
modeling framework, and so far no neuroimaging software has the
capability to do this except via the linear mixed-effects modeling
(LME) approach (Chen et al., 2013). Here wewill explore the possibility
of modeling a quantitative covariate in the presence of a within-subject
factor under the multivariate framework.

A motivational example

To motivate the exposition of the MVM approach, we present a real
FMRI group study to demonstrate a typical design that accounts for a con-
founding effect, varying age across subjects. Briefly, the experiment in-
volved one between-subjects factor, group (two levels: 21 children and
29 adults) and one within-subject factor (two levels: congruent and in-
congruent conditions). Stimuli were large letters (either “H” or “S”) com-
posed of smaller letters (“H” or “S”). For half of the stimuli, the large letter
and the component letters were congruent (e.g., “H” composed of “H”s)
and for half they were incongruent (e.g., “H” composed of “S”s). Parame-
ters for the whole brain BOLD data on a 3.0 T scanner were: voxel size of
3.75 × 3.75 × 5.0mm3, 24 contiguously interleaved axial slices, and TR of
1250 ms (TE= 25 ms, FOV= 240mm, flip angle = 35°). Six runs of EPI
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data were acquired for each subject, and each run lasted for 380 s with
304 brain volumes. The task followed an event-related designwith 96 tri-
als in each run, three global runs interleaved with three local runs (order
counterbalanced across subjects). Subjects used a two-button box to
identify the large letter during global runs and the component letter
during local runs. Each trials lasted 2500ms: the stimulus was presented
for 200 ms, followed by a fixation point for 2300 ms. Inter-trial inter-
vals were jittered with a varying number of TRs, allowing for a trial-
by-trial analysis of how the subject's BOLD response varied with
changes in RT.

The EPI time series went through the following preprocessing steps:
slice timing and head motion correction, spatial normalization to a
Talairach template (TT_N27) at a voxel size of 3.5 × 3.5 × 3.5 mm3,
smoothing with an isotropic FWHM of 6 mm, and scaling by the
voxel-wise mean value. The scaling step during preprocessing enables
one to interpret each regression coefficient of interest as an approxi-
mate estimate of percent signal change relative to the temporal mean.
To capture the subtle BOLD response shape under a condition, each
trial was modeled with 10 basis (tent or piecewise linear spline) func-
tions, each ofwhich spanned oneTR (or 1.25 s). In addition, the subject's
RT at each trial was incorporated as a modulation variable. In other
words, two effects per condition were estimated in the time series
regression at the individual level: one reveals the response curve asso-
ciated with the average RT while the other shows the marginal effect
of RT (response amplitude change when RT increases by 1 s) at each
time point subsequent to the stimulus. In addition, the following con-
founding effects were included in the model for each subject: third-
order Legendre polynomials accounting for slow drifts, incorrect trials
(misses), censored time points with extreme head motion, and the six
head motion parameters.

At the group level, it is the RTmarginal effects that are of most inter-
est, and the four explanatory variables considered are: a) one between-
subjects factor, Group (two levels: children and adults), b) two within-
subject factors: Condition (two levels: congruent and incongruent) and
Component (10 timepointswhere the profile of RTmarginal effectswas
estimated), and c) one quantitative covariate: age. This is seemingly a
relatively simple experimental design, but none of the FMRI packages
except for the linear mixed-effects (LME) modeling approach imple-
mented into program 3dLME in AFNI can analyze this situation simply
because of thedifficulty ofmodeling a quantitative covariate in thepres-
ence of a within-subject factor.

Preview

The layout of the paper is as follows. First, we review the modeling
platforms for ANOVA and GLM, and elaborate their limitations. The
MVMplatform is then introduced to overcome some of those limitations.
Second, simulation datawere generated to reveal how theMVMmethod-
ology performs in terms of controllability for false positives and false neg-
atives relative to alternative approaches, and the implementation of
MVM strategy in AFNI was applied to the experimental dataset. Finally,
we discuss the limitations of MVM, compare the strategy with other
methodologies and its limitations, and raise some questions about the
current practice and implementations in group analysis. Our contribu-
tions here are fourfold: a) TheMVMmethod allows for anynumber of ex-
planatory variables; b) Quantitative covariates can be modeled in the
presence of within-subject factors; c) The MVM platform provides a con-
venient venue for voxel-wise correction for sphericity violation; d) With
our open-source program 3dMVM in AFNI, main effects, interactions and
post hoc tests can be performed through symbolic labels, relieving the
user of the burden from tedious dummy coding.

Throughout this article, regular italic letters (e.g., α) stand for sca-
lars, boldfaced italic letters in lower (a) and upper (X) cases for column
vectors and matrices respectively, and words in monospaced font
(3dMVM) for program names. It is of note that the word multivariate is
used here in the sense of treating the effect estimates from the same
subject or from the levels of a within-subject factor as the instantiations
of simultaneous response (or outcome) variables. This usage differs
from the popular connotation in the FMRIfieldwhen the spatial structure
(multiple voxels) is modeled as the simultaneous response variables in-
cluding multivariate pattern analysis (Haxby, 2012), independent com-
ponent analysis, and machine learning methods such as support vector
machine. Major acronyms used in the paper are listed in Appendix F.

MVM platform

In contrast to the univariate GLM (Appendix A), the levels of awithin-
subject factor can be treated as multiple simultaneous response variables
under MVM. That is, each ANOVA design can be subsumed as a special
case of MVM. Furthermore, the extension also allows the handling of si-
multaneous variables that are of different nature, unlike the scenario of
a within-subject factor under the ANOVA scheme where the same type
ofmeasurement (e.g., BOLD response in FMRI) is acquired under different
conditions (e.g., positive, negative and neutral emotions). For example,
daily caloric intake, heart rate, body mass and height in behavioral
study, or correlation (or connectivity) measure under resting state, frac-
tional anisotropy, gray-matter volume, and task-related BOLD response
fromMRI data, can be formulated in a four-variate model.

A multivariate GLM includes multivariate regression and MAN(C)
OVA as special cases, and can be expressed from a subject-wise perspec-
tive, βi

T =∑ h = 1
q αhjxih + δiT = xiTA+ δiT, or through the variable-wise

pivot, bj = Xaj + dj, or in the following concise form,

Bn�m ¼ Xn�q Aq�m þ Dn�m: ð1Þ

The n rows of the responsematrix B=(βij)n × m=(β1
T, β2

T,…, βn
T)T=

(b1, b2,…, bm) represent the data from the n subjects while the m
columns correspond to the levels of within-subject factor(s). When
multiple within-subject factors occur, all their level combinations are
flattened or unfolded from a multi-dimensional space onto a one-
dimensional row of B. For example, two within-subject factors with a
and b levels respectively are represented with an ab-variate system
under MVMwithm= ab in (1). Unlike UVM, thewithin-subject factors
are coded as columns in B on the left-hand side of the model (1), and
only between-subjects variables such as subjects-grouping factors
(e.g., sex, genotypes), subject-specific measures (e.g., age, IQ) and
their interactions are treated as explanatory variables on the right-
hand side. The same linear model is applied to all the m response vari-
ables, which share the same model (or design) matrix X = (xih) =
(x1, x2,…, xn)T. Without loss of generality, X is assumed of full column-
rank q. Each column of the regression coefficient matrix A= (αhj) corre-
sponds to a response variable, and each row is associatedwith an explan-
atory variable. Lastly, the error matrix D= (δij)n × m = (δ1, δ2,…, δn)T =
(d1, d2,…, dm) is assumed nm-dimensional Gaussian: vec(D) ~ N(0, In
⊗ Σ), where vec and ⊗ are column stacking and direct (or Kronecker)
product operator respectively. As in UVM, the assumptions for (1) are lin-
earity, normality and homogeneity of variance–covariance structure
(same Σ across all the between-subjects effects). A striking feature of
the model (1) is that Σ embodies the correlations among the m error
terms as well as them simultaneous variables and is estimated from the
data instead of being presumed of sphericity as in UVM.

The matrix representation of MVM (1) vis-à-vis the vector counter-
part of GLM ((9) in Appendix A) is reflected inmost properties and test-
ing statistics as well as the solutions for the model (1) (Appendix B),
which require

n≥mþ q: ð2Þ

That is, the total number of measuring units (e.g., subjects) cannot be
less than the total number of explanatory and simultaneous variables.
Similarly, a counterpart exists in partitioning the variability sources: the
total sum of squares and cross products (SSP) can be partitioned under
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the multivariate GLM into one SSP term for regression and the other for
the errors. The specific effect for a subject-grouping factor, quantitative
covariate or an interaction, corresponds to one or more columns in the
model matrix X of (1), and is represented in one or more rows of the re-
gression coefficient matrix A. Also similar to UVM, significance testing for
the hypothesis about a specific effect can be formulated as SSPH against
SSPE, with the former being the incremental or marginal SSP between
the reducedmodel under the hypothesis and the fullmodel, and the latter
being the SSP for the errors. In general, one may perform general linear
testing (GLT) as functions of the elements of A,

H0 : Lu�q Aq�m Rm�v ¼ Cu�v; ð3Þ

where the hypothesis matrix L, through premultiplying, specifies the
weights among the rows ofA that are associatedwith groups or quantita-
tive covariates, and the response transformation matrix R, through
postmultiplying, formulates the weighting among the columns of A that
correspond to the m response variables. It is assumed that L and R are
full of row- and column-rank respectively, and u b q, v b m. The matrix
L (or R) plays a role of contrasting or weighted averaging among the
groups of a between-subjects factor (or the levels of a within-subject fac-
tor). Without loss of generality, the constant matrix C is usually set to 0.

The GLT formulation (3), sometimes referred to as double linear
or bilinear hypothesis, provides a convenient form for effect testing
including any effect associated with a within-subject factor. For ex-
ample, main effects and interactions can be considered as special
cases of GLTs with associated L and R. When R = 1m × 1, the hypoth-
esis (3) solely focuses on between-subjects explanatory variables
(columns in X) while effects among the levels of the within-subject
factors are averaged (or collapsed). In contrast, hypotheses regard-
ing a within-subject factor can be constructed via specifying the col-
umns of R. Four MVT statistics can be constructed (Appendix B) for
(3) based on HE−1, a “ratio” between the SSPH matrix H for the hy-
pothesis (3) against the SSPE matrix E for the errors in the full
model (1). Under the null hypothesis,HE−1 = I. Without loss of gen-
erality, the effects discussed here are limited to main effect of an ex-
planatory variable and interactions among two or more explanatory
variables. Other effects can be treated as main effects or interactions
under a sub-model, or are estimated through post hoc testing. For an
effect not associated with anywithin-subject factor, its testing can be
performed by setting R = 1, and is essentially equivalent to the
counterpart under the univariate GLM. Complications occur in mak-
ing inference in regard to an effect associated with one or more
within-subject factors, and there are three possible testing ap-
proaches: a) strict multivariate testing (MVT) in MAN(C)OVA, b)
within-subject multivariate testing (MVT-WS), and c) univariate
testing (UVT) under the MVM platform. Here we only discuss the lat-
ter two situations as they directly pertain to the univariate GLM.

Within-subject multivariate testing (MVT-WS)

Under the conventional MVM one can test the centroid in Rm at the
group level, and such centroid testing is composed of joint tests in the
sense that the same hypothesis is tested across them response variables
(Appendix C). However, when a within-subject factor with m levels is
modeled under UVM, the hypothesis about the centroid is typically not
of direct interest. Instead, the focus underMVM is usually on themain ef-
fect of the factor (or the equality of them levels) and the interactions be-
tween the factor and other explanatory variables, and the testing strategy
is typically referred to as within-subject multivariate testing (MVT-WS),
repeated-measures MA(C)OVA, or profile analysis. When only one
within-subject factor withm levels is involved, its associatedR can be de-
rived from the corresponding effect codingmatrix, converting the original
m response variables intom− 1 unique deviations each of which repre-
sents the difference between a level and the average across all levels. And
the testing for the main effect now pertains to the (m− 1)-dimensional
centroid of those deviations. When there are k within-subject factors
present (k N 1), the R for each effect associated with one or more
within-subject factors can be computed through the Kronecker product,

R ¼ R 1ð Þ ⊗R 2ð Þ⊗⋯⊗R kð Þ
; ð4Þ

where R(i) takes the effect codingmatrix if the ith within-subject factor is
involved in the effect, otherwise R ið Þ ¼ 1ni

, where ni is the number of
levels for the ith within-subject factor (i= 1, 2, ⋯, k) (Appendix C).

In summary, the MVM framework allows one to perform multivari-
ate testing for the main effect of a within-subject factor and its interac-
tions with other variables. Unlike its counterpart under the univariate
GLM, the MVT-WS strategy estimates the variance–covariance ma-
trix based on the data instead of presuming a specific structure
(e.g., sphericity). At the cost of degrees of freedom and with a higher
demand for sample sizes as shown in (2), it bypasses the stringent sphe-
ricity assumption made in the univariate GLM, and can accommodate
any possible variance–covariance structure. The choice of effect coding
here is for interpretation convenience and consistency, but it should be
emphasized that infinite coding methods exist. If a coding method is
chosen so that the columns of R(i) are orthonormal, the transformed
variance–covariance matrix is diagonal with equal variance and thus
spherical. However, different coding strategies in R(i) do not matter in
terms of hypothesis testing because of the invariance property.

Univariate testing (UVT) under the MVM platform

Even though the levels of a within-subject factor are treated as si-
multaneous response variables under the MVM framework (1), UVT
can still be performed under MVM thanks to the pivotal role played by
the response transformation matrix R in the hypothesis (3). Further-
more, if the dataset can also be analyzed under the univariate GLM,
the UVT statistics fromMVM are exactly the same as they would be ob-
tained through the univariate approach. More importantly, MVM offers
more UVT capability (e.g., unequal numbers of subjects across groups,
quantitative explanatory variable in the presence of within-subject fac-
tor, a unified and adaptive platform) and provides the option of correc-
tion for sphericity violation. Specifically, for the effect of a between-
subjects factor (or quantitative covariate) or the interaction of two be-
tween-subjects variables, the formulation of its F-statistic with H and
E through L andR is done in the sameway forMVT-WS, andR essential-
ly plays the role of averaging or collapsing among the levels of each
within-subject factor (if present). In factH and E in this case correspond
to the SS terms under the corresponding UVT, leading to the same F-
statistic as in the associated UVM. For an effect that involves at least
onewithin-subject factor, the UVT F-statistic is different from the situa-
tionwithMVT-WS. Once the associated R in (4) is constructed, under
the sphericity assumption its SS term and the corresponding SS term
for errors can be obtained (Fox et al., 2013) as tr(H(RTR)−1) and
tr(E(RTR)−1). Under alternative coding schemes that render an or-
thonormal transformation matrix R, unique portions of variance
among the transformed response variables can be captured, and
the SS terms simplify to tr(H) and tr(E).

The two kinds of explanatory variables are differentially coded in the
MVM formulation (1) as follows. The within-subject factors are
flattened and mapped onto R1 as the columns in the data matrix B. On
the other hand, the between-subjects factors and quantitative covari-
ates are coded as the columns in the model matrix X. In doing so, each
subject is associated with a row in B, X and residual matrix D; if there
are multiple estimates of an effect from a subject (e.g., due to multiple
runs or sessions), those multiple values can be essentially averaged be-
fore plugging into themodel. Moreover, the rows and columns of A cor-
respond to the between- and within-subject effects respectively. It is of
note that subjects are not explicitly represented among the columns of
X in the MVM platform (1), unlike the univariate GLM (Appendix A) in
which all the response values form a column vector and subjects are
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coded as columns for the random effects in the model matrix. The sep-
arate coding for the two variable types in MVM is also reflected in the
roles of L and R in formulating each hypothesis, and provides a simpler
solution in pairing the SS terms for each effect than the univariate GLM.
It is this separate treatment that not only makes its extended modeling
capabilities and advantages possible but also leads to elegant
implementations. Unlike the univariate GLM where the difficulty lies
in the pairing for the denominator of each F-statistic, the SSPE matrix
E is fixed under MVM, and the corresponding UVT formulation hinges
on the construction of the SSPHmatrixH, which translates to specifying
the response transformationmatrix R. As R in the formulation (4) is ei-
ther the coding matrix for a within-subject factor or the Kronecker
product of multiple coding matrices, statistic formulation is much sim-
pler than the pairing process in the univariate GLM.

For example, the UVT for a factorial two-waywithin-subject ANOVA
(Appendix C) demonstrates that the flattened within-subject factors
under MVM can be restored through constructing a proper R in the hy-
pothesis (3). The transformation provides a convenient hinge with
which any number ofwithin-subject factors ismultiplicatively flattened
onto the left-hand side of an MVM system, and later allows for the res-
toration of significance testing for main effects and interactions in the
UVM style. This process in and of itself is of little theoretical value;
rather, the appealing property of the transformation lies in the compu-
tational or algorithmic perspective. The implementation advantage is
that the user interface only involves symbolic representations of all var-
iables and factor levels without any direct specification through dummy
coding. In addition, the easy pairing for the SS terms in the F-statistic of
each effect relieves us of themanual pairing process required in the uni-
variate GLM so that the number of within-subject factors is no longer a
limitation in implementation. Furthermore, the sphericity verification
and the correction for its violation (Appendix D) become an intrinsic
step for UVT under MVM because they depend on the transformation
matrix R and the SSPE matrix E.

Another appealing feature of MVM is in modeling quantitative co-
variates in the presence of a within-subject factor. If such a covariate
is at the subject level (i.e., between-subjects covariate) and does not
vary across the within-subject factor levels, treating the within-
subject factor levels as simultaneous response variables in MVM allows
separate effect modeling of the covariate for each factor level. In other
words, a within-subject factor withm levels is estimated withm differ-
ent slopes for the quantitative covariate, which cannot be handled
under UVM. The significance testing for them slopes can be performed
under UVT through the framework (3) or under MVT-WS. It is of note
that a quantitative covariate that varies across the within-subject factor
levels (i.e., within-subject covariate) cannot be modeled under MVM,
but can be analyzed through LME (Chen et al., 2013).
Implementation of MVM in AFNI

To recapitulate, theMVM framework includes AN(C)OVA andmulti-
ple regression as special cases. In addition to the capability of MVT-WS,
it lends us extendedoptionswhen performingUVT compared to the tra-
ditional approaches such as ANOVA and univariate GLM. For example,
as each subject occupies one row in the model formulation, the impact
of unequal numbers of subjects across groups would be limited on the
degrees of freedom and the orthogonality of variance partitioning, but
not on modeling capability. Subject-specific quantitative explanatory
variables can be easily incorporated in the model matrix X, even in the
presence of within-subject factors. The construction of effect testing
through the hypothesis matrix L and the response transformation ma-
trix R in the formulation (3) allows for easy implementation with any
number of explanatory variables, and the user is relieved from having
to deal with dummy coding. The Mauchly test (Mauchly, 1940) for
sphericity violation and the correction for the inflated F-tests can be
readily established.
The MVM framework has been implemented in the AFNI program
3dMVM in the open source statistical language R (R Core Team, 2013),
using the MVM function aov.car() in the R package afex (Singmann,
2013). In addition to the capability of modeling quantitative covariates
at the subject (and the whole brain) level, 3dMVM can also handle quan-
titative covariates at the voxel level (e.g., signal-to-fluctuation-noise
ratio). Multiple estimates of an effect from runs or sessions of each sub-
ject can be directly fed into 3dMVM as input, and are averaged internally
in the program. Post hoc t-tests are represented through symbolic cod-
ing based on R package phia (De Rosario-Martinez, 2012), and they
include pair-wise comparisons between two levels of a factor, linear
combinations (e.g., trend analysis) among multiple levels of a factor
(weights not having to sum to zero), and interactions among multiple
factors that involve one or two levels of each factor. For example, in a
3 × 3 × 3 ANOVA, all the 2 × 2 and 2 × 2 × 2 interactions are essentially
t-tests, which can be performed in 3dMVM. Parallel computing on multi-
core systems can be invokedusingR package snow (Tierney et al., 2013).
Effect coding was adopted for factors so that the intercept represents
the overall average effect across all factor levels and at the center of
each quantitative covariate. Runtime varies from minutes to hours,
depending on data size, model complexity, and computing power.

The F-statistic for an effect that only involves between-subject
variables (factors or quantitative covariates) under MVM is uniquely
determined because of the absence of sphericity issue and is the
same as would be obtained under UVM. In contrast, for any effect
that is associated with at least one within-subject factor, 3dMVM pro-
vides four versions of F-statistic: a) within-subject multivariate test-
ing (MVT-WS), b) univariate testing without sphericity correction
(UVT-UC), c) univariate testing with sphericity correction (UVT-SC)
through contingencies based on the Greenhouse–Geisser (Greenhouse
and Geisser, 1959) and Huynh–Feldt (Huynh and Feldt, 1976) correc-
tions (Appendix D) (Girden, 1992),

UVT−SC ¼ GG;
HF;

if ϵHF b 0:75
if ϵHF ≥ 0:75

�

and, d) hybrid testing (HT) that extends the UVT-SC approach,

HT ¼
MVT−WS;

sphericitycorrection GG;
HF;

if 0:55 ≤ ϵHF b 0:75
if ϵHF ≥ 0:75 :

�8<:
ð5Þ

The two correction methods above, UVT-SC and HT, adopted at the
voxel level in 3dMVM, are similar to statistical packages such as car in R
(Fox et al., 2013), GLM in IBM SPSS Statistics (IBM Corp., 2012) and
REPEATED statement in PROC GLM of SAS (SAS Institute Inc., 2011) ex-
cept that contingent schemes are adopted here. In addition, instead of
directly adjusting the degrees of freedom for sphericity correction, we
opt to keep the original degrees of freedom (constant across the
brain) but change the F-value to match the adjusted p-value, and this
allows us to simplify the bookkeeping and visualization of the output.

The variables and input data are specified through the long format of
data frame, a standard data structure in R. In keeping with AFNI's
interface for coding convention, variable type declaration and general
linear hypothesis tests in 3dMVM are specified through variable names
(e.g., condition) and symbolic labels (e.g., pos, neg, andneu). This is con-
siderably more appealing and less error-prone than manually dummy-
coding the categorical variables andmodel formulations. Neuroimaging
data can be in AFNI or NIfTI format. The F-statistics for individual ex-
planatory variables and their interactions are automatically generated
instead of the user specifying regressors or assigning weights among
the regressors as in FSL, SPM, and GLM Flex. The Pillai–Bartlett trace is
adopted as the default for MVT-WS although the other three multivari-
ate statistics are available as options. Two types of F-statistic formula-
tions are available, partially sequential and marginal (types II and III in
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the SAS terminology). The user can request for post hoc tests through
symbolic coding, and both the amplitude and t-statistic are provided
as output. A scripting template for running 3dMVM is demonstrated in
Appendix E.

Applications and results

Among the four approaches in testing an effect associated with a
within-subject factor, MVT-WS is considered the most effective when
the response variables are moderately correlated (e.g., between 0.4 and
0.7) (Tabachnick and Fidell, 2013)with the following rationale: If the cor-
relation is too low, the response variables are loosely independent of each
other and the variance–covariance structure is close to sphericity, thus
the MVM approach becomes inefficient and may lose power compared
to the univariate methods; on the other hand, when the correlation be-
comes high, the response variables can be considered the same var-
iable, and MVM would be costly in wasting high degrees of
freedom. To effectively compare these testing methods in light of
power and controllability for false positive rate (FPR), simulations
and applications are needed.

Simulations of group analysis with 3dMVM

Simulated data were generated with the following parameters in a
typical FMRI group analysis: two groups with 15 subjects in each, and
their hemodynamic response (HDR) functions lasting for 12 s but with
a 2 s difference in peak location (Fig. 1A). The HDRs are presumably es-
timated through 7 basis functions (e.g., TENT in AFNI) at the individual
subject level to capture the shape differences. Each effect component βij

estimated from the ith subject in the jth group (i = 1, 2,.., 7; j = 1, 2)
corresponds to the response amplitude at a TR grid, and is assumed
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1 ρ ρ2
… ρ6

ρ 1 ρ … ρ5

⋮ ⋮ ⋮ ⋮ ⋮
ρ6 ρ5 ρ4

… 1

2664
3775;

where σ=0.3, and 10 equally-spaced values ρ=0.0, 0.1,…, 0.9 were
chosen to simulate the extent of sphericity violation, ranging from
none to high severity. Infinite correlation structures exist as long as
the matrices are symmetric positive semi-definite. The AR(1) choice
was based on two considerations, the nature of the data structure
(HDR estimates at consecutive time points) and the full spectrum
of sphericity violation that it spans: The severity is a monotone in-
creasing function of ρ (Fig. 1B). 5000 datasets were generated, each
of which was analyzed through 3dMVM with two explanatory vari-
ables, Group (2 levels) and Component (7 effect estimates associated
with the basis functions). This is essentially a two-waymixed-design
factorial ANOVA with one between- and one within-subject factor.
FPR and power were assessed through counting the datasets with
the perspective F-statistic surpassing the threshold corresponding
to the nominal significance level of 0.05.

As a reference, UVT-UC for the main effect (or coincidence) of
between-subjects factor Group (whether the two groups have different
areas under the curve, H0 :∑ i = 1

7 βi1 =∑ i = 1
7 βi2), without involving

sphericity violation because of a scalar variance–covariance, shows an
FPR very close to the nominal significance level of 0.05 (not shown
here). In contrast, UVT-UC for the interaction Group:Component (paral-
lelism in profile analysis, testingwhether theHDR curves are commensu-
rate or parallel with each other: H0 : β11 − β12 =…= β71 − β72) has a
reasonable control for FPRwhen ρ b 0.2 (no or mild sphericity violation),
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but becomes increasingly out of control with higher ρ or more severe
sphericity violation (Fig. 1C). On the other hand, MVT-WS, UVT-SC and
HT performwell in FPR control (Fig. 1C) throughout thewhole range of ρ.

With regard to power, all four tests for the interaction effect shows a
decreasing trend as ρ (and sphericity violation severity) becomes high
(Fig. 1D), which is not unexpected because higher serial correlation
leads to more difficulty in untangling the components. UVT-SC achieves
roughly the same power when ρ b 0.2, but its power loss worsens with
a large ρ. On the other hand, there is a large power disadvantage for
MVT-WS even when ρ = 0 compared to UVT-UC and UVT-SC. Its
underperformance gradually deteriorates with a large ρ but improves
with ρ N 0.3. Around ρ = 0.65, MVT-WS overtakes UVT-SC, and its
outperformance expands further and finally exceeds UVT-UC around
ρ= 0.87. As HT is conditionally defined in (5) based on the spheric-
ity measure ϵHF, its power performance is roughly the higher one be-
tween MVT-WS and UVT-SC.

The main effect of Component (or first-order interaction) indicates
whether the average HDR curve between the two groups is a flat line
or constancy (H0 : β11 + β12 = … = β71 + β72), a special case of
hypothesis of parallelism (the average HDR curve parallel to the null).
Its simulated results show a similar pattern (not illustrated here) to
the second-order interaction effect, Group:Component, in both FPR con-
trol and power.

It is of note that our simulation results with an AR(1) correlation
structure are not consistent with the previous notion that MANOVA is
most powerful when the correlations among the response variables
are in the range of (0.4, 0.7) (Tabachnick and Fidell, 2013). Instead
MVT-WS underperforms compared to UVT-SC when ρ b 0.65, but
MVT-WS (and HT) overtakes UVT-SC in power when ρ ≥ 0.65. In
other words, UVT-SC is preferred when the sphericity violation is
moderate (e.g., ϵHF b 0.65), but MVT-WS outperforms UVT-SC when
sphericity is severely violated (ϵHF ≥ 0.65).

Applying 3dMVM to real data

How do the testing approaches (UVT-UC, UVT-SC, MVT-WS, and HT)
perform when applied to real data? What does a real dataset reveal
about the heterogeneity of the variance–covariance structure in the
brain? Does MVT-WS identify any significant regions that would not be
detected under UVT? To address these questions, we applied MVM to
the data presented in the Introduction section with n= 50 (2 groups: 21
children and 29 adults), m = 20 (2 conditions with each having 10 esti-
mates of RT marginal effect) and design matrix X of q = 4 columns in
(1): all ones (intercept or average effect across groups), effect cod-
ing for the two groups, the average age effect between the two
groups, and the interaction Group:Age (or group difference in age effect).
The age valueswere centeredwithin each group so that the group effect
can be interpreted as the difference between the two groups at their
respective average age. Runtime was about 90 min using 12 processors
on a Linux system (Fedora 14) with Intel® Xeon® X5650 at 2.67 GHz.

We focused on the three-way interaction Group:Condition:Compo-
nent that indicatedwhether the two groups had the same or parallel pro-
file of the RTmarginal effect differences between the two conditions. Four
F-statistics for the interaction, UVT-UC, UVT-SC, MVT-WS, and HT, were
obtained and then, due to different degrees of freedom, converted to Z-
values for direct comparisons. Their overall performance can
be assessed through histograms of pair-wise differences in Z-value
(Fig. 2) and a slice of significance map in a coronal view (Fig. 3A). In gen-
eral, UVT-UC, at the cost of poor control for FPR, showed the highest
power among all four tests in almost all regions (A, D, F in Fig. 2). Some
exceptions exist; for example, MVT-WS rendered significant results at
regions where other tests failed, as shown at the region (crosshair)
in Fig. 3A and Voxel 1 in Figs. 3(B and C). The outperformance of MVT-
WS is also seen in the voxel count in Figs. 2(D and E). With FPR well-
controlled, it is not unexpected to see that UVT-SC achieved lower
power than UVT-UC (Fig. 2F; Voxels 2–5 in B and C of Fig. 3). On the
other hand, UVT-SC achieved higher power than MVT-WS at some re-
gions (Fig. 2E, Voxels 3–5 in B and C of Fig. 3) while at other regions
MVT-WS outperformed (Fig. 2E; Voxels 1 and 2 in Figs. 3(B and C)). HT
largely takes its statistical value from either UVT-SC or MVT-WS based
on the severity of sphericity violation in the contingency table (5).
However, as indicated at Voxels 2, 3, and 5 in Figs. 2(B and C) and in
Figs. 3(B and C), the significance level of HT is not always the higher
value between the two. Even though the simulations indicated that
HT had equal or higher power than UVT-SC and MVT (Fig. 1), it does
not necessarily render equal or higher significance when applied to
each specific dataset due to the nature of randomness. The voxels in
Fig. 3 were selected from clusters, not isolated voxels, that survived a
liberal voxel-level significance of 0.05. In addition to statistical signifi-
cance, the spatial extent and the profile patterns of the RT marginal ef-
fects were consistent across voxels within each cluster (not shown
here) as well as across regions (Fig. 3C), providing additional evidence
for the existence of the effects under investigation. One observation of
interest is that, when the sample size is proper, MVT and UVT usually
converge; however, discrepancies of significance inference between
UVT and MVT typically occur when the sphericity violation is severe
(e.g., ϵHF b 0.55) as shown at Voxels 1, 3, and 5. This revelation under-
scores the importance of combining both UVT andMVT in data analysis.

One popular practice in correcting for sphericity violation is to assume
a uniform correlation structure within and across the brain regions, and
thus the structure could be estimated by pooling all the voxels among
those regions that reach some level of significance (Glaser and Friston,
2007). However, to our knowledge the uniformity assumption has not
been empirically tested. With MVM and our empirical data, we found
substantially broad variations in the violation severity from the perfect
sphericity (Fig. 3B; Fig. 4) both within and across regions, raising ques-
tions about the brain-wide pooling strategy. Per a reviewer's request,
we performed direct comparisons of theMVM approach to themodeling
strategies adopted in SPM and GLM Flex. To do so, we had to reduce the
original model by removing two explanatory variables, quantitative co-
variate RT and within-subject factor Condition, through averaging the
two conditions. In such a mixed two-way ANOVA with one between-
subjects factor Group and onewithin-subject factor Component,we com-
pared the three omnibus tests: main effects for Group and Component,
and their interaction. As shown in Fig. 5A, 3dMVM and GLM Flex provided
identical Group effect except for differences ascribable to numerical
roundoff errors. However, SPM'sFlexibleFactorialDesign returned
largely inflated statistical significance values resulting from the incorrect
implementation of the F-statistic for the between-subjects effect
(McLaren et al., 2011) with a smaller denominator (MSS(A) instead of
MSBS(A)) as well as a larger number of degrees of freedom (432 instead
of 48) (the between-subjects factor A in (7) of Appendix A). On the
other hand, the three programs rendered similar interaction effect
Group:Component (Fig. 5B) at a liberal voxel-wise significance level of
0.05. However, closer comparisons show that the effect significance dif-
fered between MVM and the other two programs. This is the result of
the differing assumptions about the spatial distribution of the variance–
covariance structure. The amount and direction of bias were strongly cor-
related with the extent of sphericity violation relative to the average as
demonstrated in the scatterplot of Fig. 5B.

Discussion

Group analysis is an essential part of neuroimaging investigations to
make generalizations. As a routine step, most studies can be analyzed
through Student's t-tests or simple ANOVAs. Themajority of researchers
are trained in the conventional ANOVA-style, and are thus familiar with
such procedures. In some situations, it might be more straightforward
to adopt a piecemeal strategy and parse the individual Student's t-
tests than to utilize one full model. Under other circumstances,
Student's t-tests and simple ANOVAs no longer meet the needs as they
did in the early days of neuroimaging, and sophisticated modeling
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Fig. 2.Histograms of Z-value differences at 2383 voxels (resolution: 3.5 × 3.5 × 3.5 mm3) that reached the voxel-wise significance level of 0.05 for HT. The Z-values were converted from
the original F-valueswith different degrees of freedom. Six pairwise comparisons are shown: (A) HT and UVT-UC, (B) HT andUVT-SC, (C) HT andMVT-WS, (D)MVT-WS and UVT-UC, (E)
MVT-WS and UVT-SC, (F) UVT-UC and UVT-SC. Cell width is 0.1 in Z-value difference. The spikes in (B) and (C), with a height of 958 and 1437 voxels respectively, were chopped off for a
comparable representation among the histograms, and they indicate that little difference existed between the two tests at most voxels.
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strategies are needed. Nowadays a longitudinal study scenario would
not be farfetched with, for example, seven explanatory variables, in-
cluding four between-subjects factors: sex (male and female), disease
(patient and control), genotypes (two homo- and one hetero-zygote),
multiple sites/scanners; twowithin-subject factors: condition (positive,
negative and neutral stimuli), clarity (clear and vague); and one quanti-
tative covariate: age. Even if this scenario could be analyzed through a
piecemeal fashion (without modeling the age effect), one would be in-
undated by the sheer number (~200) of individual t-tests.

There are some reasonswhy it is advantageous to adopt the tradition-
al approach of one integrativemodel that incorporates all the explanato-
ry variables. When numerous explanatory variables are involved, the
omnibus F-test for an intersection (or global null) hypothesis regarding
a main or interaction effect offers the safeguard of weak family-wise
error (FWE) rate control, a minimum requirement of correction for mul-
tiple comparisons relative to the strong FWE correction for the post hoc
tests. In addition, the omnibus F-statistic provides a search guide for par-
ticular comparisons without exhaustively enumerating all possible com-
binations. Another benefit is that, compared to the piecemeal tests
involving one group, merging all the data into one comprehensive
model may increase statistical power by enlarging or borrowing sample
sizes across groups. Lastly, due to sampling constraints or other reasons,
it is sometimes desirable to control or account for confounding effects
such as age and IQ, and such quantitative covariates are easier and
more economical (with lower cost in degrees of freedom) to handle in
a full model than the piecemeal fashion. Traditional ANOVAs, as adopted
in 3dANOVA, 3dANOVA2, 3dANOVA3 and GroupAna in AFNI, are per-
formed through frugal computations of SS terms for the numerator and
denominator of each F formulation. Their applications are limited from
the following perspectives: A) Each specific model is associated with a
unique set of F-ratios based on the numbers of factors and factor types
(between- or within-subject), which is a considerable deterrent when
extending the modeling scope; B) Quantitative covariates cannot be
incorporated; C) A rigid data structure requires an equal number of
subjects across groups; D) Sphericity testing and correction for its viola-
tion are generally not available under the SS computation schemes. In
contrast, the univariate GLM approach offers a more versatile and inclu-
sive platform for a full model strategy. In addition to being capable
of seamlessly incorporating quantitative covariates, GLM has the poten-
tial to analyze cases with a large number of explanatory variables.
This modeling strategy has been implemented in programs such as
3dRegAna in AFNI, GLM of FEAT in FSL, Full and Flexible Factorial
Design in SPM, and the stand-alone program GLM Flex. However, their
applications are hindered by three limitations. The pairing of numerator
and denominator in each F-statistic is tedious, and depends on the vari-
able type (between- or within-subject factor, or quantitative covariate)
as well as on the number of explanatory variables. This UVM limitation
prevents the strategy fromextending to an arbitrary number of variables.
Furthermore, there is no direct correction available for sphericity viola-
tion under the univariate GLM. Lastly, it is difficult to model a quantita-
tive covariate with a within-subject factor.

In the literature,modeling a quantitative covariate is usually restrict-
ed to standard multiple regression (in the absence of both within- and
between-subjects factors) or ANCOVA with between-subjects factors
but no within-subject factors. It is rare to see discussions about model-
ing a quantitative variable in thepresence of one ormorewithin-subject
factors. One suggestion (Rutherford, 2001) is that one can break down,
for example, a mixed two-way factorial ANCOVA (one between- and



Fig. 3. (A) Four tests are illustrated on a coronal slice (Z=27)with colored voxels at the 0.05 level. Neithermultiple testing correction nor cluster-level thresholdingwas applied. Voxel 1 in
(B) and (C) is at the crosshair. The left brain is shown on the right. (B) TheMauchly test, sphericity measures (ϵGG and ϵHF) and the four testing statistics are shown at six voxels from the
three-way interaction. The extent of sphericity violation is broad among the six voxels. (C) RT marginal effects in condition comparisons (first two columns) and in the three-way inter-
action are plotted at the six voxels in (B)with each profile spanning over 11 TRs or 13.75 s. In addition to the statistical significance presented in (B), the RTmarginal effect profiles of each
group at both conditions and the three-way interactions provided strong evidence for the existence of the associated effects at these voxels.
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onewithin-subject factor plus a quantitative covariate) into two separate
analyses: one ANCOVA with the between-subject factor plus the covari-
ate, and one within-subject ANOVA. For the latter, as the quantitative
covariate would not have any impact on the comparisons among the
levels of the within-subject factor, it would be unnecessary to consider
modeling such a quantitative covariate when testing the within-subject



Fig. 4. Spatial inhomogeneity of ϵHF values is illustrated through a histogram (A), an axial (X=−2) (B), a sagittal (Y=36) (C) and a coronal (Z=27) view (D) at 5192 voxels (resolution:
3.5 × 3.5 × 3.5mm3) that reached the voxel-wise significance level of 0.05 for UVT-UC. Cell width in (A) is 0.01. The distribution of ϵGG (not shown here) is similar. Notice that 1/9≤ ϵGG≤
ϵHF≤ 1 (Appendix D), mean(ϵGG)= 0.439, sd(ϵGG)= 0.105, mean(ϵHF)= 0.488, sd(ϵHF)= 0.130. Coronal view (D) and the colored clusters are the same as in Fig. 3A. Red, green and blue
in (B) and (C) correspond to no, mild, and severe violation of sphericity assumption. A substantial amount of variability in ϵHF exists within and across brain regions; that is, the severity of
sphericity violation is spatially heterogeneous.
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factor effects. However, the inclusion of a quantitative explanatory vari-
able is not just important for improving a specific effect estimate, but
also for increasing the statistical power by accounting for knowable
source of variability. On the other hand, if the correlation between the
levels and the quantitative covariate is not a nuisance but a goal, a
workaround solution proposed was to reduce the within-subject factor
intomultiple pairwise comparisons among the levels, and then run tradi-
tional ANCOVAs on each comparison. However, such practice presumes
that the correlation between each level and the quantitative covariate is
constant across all levels, a presumption that may not necessarily hold
unless tested, unlike in MVM where each level is treated as a response
variable with a separate covariate effect. Lastly, the piecemeal approach
is suboptimal and may become unbearably cumbersome as the number
of variables increases.

Due to some flaws in software design or implementation, misuses or
outright model misspecification is often seen even in seemingly simple
analyses (McLaren et al., 2011). For example, effect estimates from
multiple runs or sessions from each subject are easily and incorrectly
entered as independent samples in t-tests; two-sample t-tests and
between-subjects ANOVAs (e.g., “full factorial design”) are mistakenly
used to handle situations involving a within-subject factor; a mixed
ANOVAwith one between- and onewithin-subject factor implemented
in univariate GLM (e.g., “flexible factorial design”) is inappropriately
adopted to make inferences about the effect of the between-subjects
factor or the effect at a specific factor level; improper analysis for a
two- or three-way within-subject ANOVA is performed in GLM
(e.g., “flexible Factorial Design”) where no error differentiation is
considered for the denominator of each F-statistic. In contrast, an inter-
face that requires the user to explicitly specify the structural model for
the data in terms of the explanatory variables (in symbolic form) has
the potential to force clarity into the statistical analysis choice.

Overview of the MVM methodology

Multivariate GLM, as a progenitor of the theory of algebraic invari-
ants, has been available for over 50 years, but its wide applications are
generally discouraged (Tabachnick and Fidell, 2013). A few reasons
have contributed to its unpopularity in general. Compared to UVM,
MVM's theory is less tractable, and is generally not covered in basic
statistics education. In addition, most multivariate models can also be
formulated under the univariate platform, but the multivariate
approach is generally considered not as powerful as the latter. Also,
the various testing statistics under MVM are not as well-behaved or as
simple as the popular t- and F-statistics. Its high computational cost is
another hindering factor cramping its wide applicability. Nevertheless,
the MVM provides two irreplaceable advantages, one in implementing
the traditional UVT methodology, and the other in offering MVT as an
auxiliary test. Its role as a scaffold allows for any number of within-
subject factors under UVT and further augments the UVT by the capabil-
ity to correct for sphericity violation. Its adaptive flexibility in capturing
the correlations among the levels of a within-subject factor under MVT
complements UVT. Specifically, the deviations among the levels of a
within-subject factor are traditionally entered into UVM as random ef-
fects, leading to a parsimonious assumption for the covariance struc-
ture. In contrast, in MVM those deviations are treated as simultaneous
response variables, allowing for estimating the correlations.

We have implemented the MVM methodology as an alternative to
the univariate GLM in the program 3dMVM in AFNI. A flattening process
transforms the levels for each within-subject factor as well as the level
combinations across multiple within-subject factors into simultaneous
response variables, and separates the within-subject factors from the
between-subjects variables on the two sides of the MVM system. The
platform renders the same results as the univariate GLM when no
within-subject factors are involved in the hypothesis. On the other
hand, when an omnibus hypothesis is associated with one or more
within-subject factors, two types of testing, MVT-WS and UVT, can be
performed through a folding process. The former is constructed through
proper specifications of L, R, and C in general linear hypothesis (3) in
which the variance–covariance structure Σ is estimated instead of
being assumed spherical. Similar to the univariate GLM, the impact of
unequal numbers of subjects across groups would be limited by the de-
grees of freedom and the broken orthogonality, not by modeling capa-
bility. It is the separation between within- and between-subjects
variables and the construction of the response transformation matrix
R in (3) that allow for easy implementationwith any number of explan-
atory variables, and the user is relieved of directly dealing with dummy
coding. In addition, theMauchly test for sphericity violation and the cor-
rection for over-liberal F-tests in UVT are readily incorporated. Among
the four F-tests (UVT-UC, UVT-SC, HT, and MVT-WS) implemented in
3dMVM for each omnibus hypothesis that involves awithin-subject factor,
the latter three tests possesswell-behaved control of FPR. Consistentwith
previous studies (O'brien and Kaiser, 1985;Maxwell and Delaney, 2004),
our simulations and analysis results with real data indicated that there is
no single preferable testing method that uniformly achieves the highest
power. It is the combination of UVT and MVT that not only expands the
modeling capabilities but also benefits in combined detection power
(Barcikowski and Robey, 1984; Looney and Stanley, 1989). Their comple-
mentary role is evidenced by the situations when one test but not the
other reveals significance, which usually occurs when sphericity is se-
verely violated. For example, Voxel 1 in Fig. 3 illustrates the importance
of significance detection through MVT-WS that would not be revealed
through the univariate GLM or UVT.

It ismore often the rule than the exception that the variance–covari-
ance matrix Σ for a within-subject factor with more than two levels is
not spherical. The data-driven approach of MVM for estimating Σ is
more adaptive to allow for any correlation pattern, but pays the price
in statistical power when sphericity violation is negligible or moderate;
the power loss is reflected in the reduction of denominator degrees of
freedom for the F-statistic (cf., the corresponding UVT F-statistic). On
the other hand, MVT-WS is preferred when the violation is severe. In
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Fig. 5. Performance comparisons on a two-way ANOVAwith one between-subjects (Group) and onewithin-subject (Component) factor among threemodeling strategies: 3dMVM in AFNI,
FlexibleFactorial Design in SPM (SPM8 v5236), andMatlab package GLM Flex. The original F-statistic valueswith different degrees of freedomwere converted to Z-values for direct
comparisons. The color-coded Z-valuemaps are thresholded at the voxel-wise significance level of 0.05 and shown at the same focus point of (X, Y, Z) = (−2, 36, 27) as in Figs. 3A and 4.
(A) 3dMVM and GLM Flex rendered virtually identical group effectwhile Flexible Factorial Design dramatically inflated the significance due to the incorrect formulation of F-statistic
for the between-subjects effect: both the denominator (MSS(A) versusMSBS(A) for factor A in (7) of Appendix A) and the associated degrees of freedom (432 versus 48) were inappro-
priate. The inflation is also demonstrated in the scatterplot of the Z-values in the brain on the right-hand side. (B) The three programs gave similar interaction effect, but the subtle dif-
ferences lie in the biases of Flexible Factorial Design and GLM Flex on the significance. UVT-SC was adopted here in 3dMVM for comparisons. As shown in the scatterplot of Z-
value differences, the biases at each voxel are positively correlated with the deviation of sphericity violation from the average among the selected voxels. The slight differences
between Flexible Factorial Design and GLM Flex were likely due to different selected voxels for the pooling process of the correlation structure.

581G. Chen et al. / NeuroImage 99 (2014) 571–588
contrast, UVT makes a parsimonious assumption about spherical struc-
ture Σ, and produces the same results as the univariate GLM. However,
UVT under the MVM platform excels in two aspects relative to the
univariate GLM. First, sphericity testing is available, and the violation,
if significant, can be corrected through adjustment in the degrees of
freedom. Secondly, incorporating a quantitative explanatory variable



582 G. Chen et al. / NeuroImage 99 (2014) 571–588
in the presence of a within-subject factor is available under MVM but
not under the univariate GLM.

In future work, we plan to extend the MVM framework to two situ-
ations. First, when the BOLD response shape is captured through multi-
ple basis functions, MVM offers further detection power than what has
been demonstrated here in the real data application. The second scenar-
io is that multiple response variables in different modalities (or units)
can be readily analyzed in the traditional MVT fashion. For example,
connectivity measures of resting state at various seed regions are truly
simultaneous response variables and can be formulated in an MVM
system to test the centroid. Similarly, a correlation (or connectivity)
measure under resting state, fractional anisotropy on the white matter
tract, gray matter volume, and task-related BOLD response from MRI
data would constitute a four-variate model.

Comparisons with other implementations in neuroimaging

For within-subject experiment designs, there are three modeling
approaches: UVM, MVM, and linear mixed-effects modeling (LME). The-
oretically, LME (e.g., as implemented in the AFNI program 3dLME) is con-
sidered the most inclusive platform, and UVM naturally generalizes
to LME that is advantageous under several circumstances
(Bernal-Rusiel et al., 2012; Chen et al., 2013), including missing
data, modeling quantitative covariates that vary within-subject
(e.g., RT measures under positive, negative and neutral conditions),
and data with genetic information. However, the LME framework
becomes lackluster in practice especially when dealing with con-
ventional AN(C)OVAs for two reasons. First, its flexibility to model
the variance–covariance structure excels in model building and
comparison, but becomes impractical in the situation of massively uni-
variate modeling. In addition, the difficulty in assigning degrees of free-
dom leads to its heavy reliance on asymptotic properties. When the
sample size is not large enough, it is unrealistic to adopt numerical ap-
proximations such as bootstrapping and Markov Chain Monte Carlo
(MCMC) simulation sampling for neuroimaging data analysis.

The Matlab package GLM Flex, FSL (GLM in FEAT) and SPM (Full
and Flexible Factorial Design) all provide the univariate GLM
methodology. Among them, GLM Flex is the closest in capability to
3dMVMwith the following differences: a) 3dMVM can model quantitative
covariates in the presence of within-subject factors; b) Symbolic repre-
sentation for factor levels provides a more user-friendly interface for
both input and output; c) 3dMVM provides voxel-wise sphericity correc-
tion instead of assuming one variance–covariance structure over the
whole brain; d) No upper bound exists in3dMVM upon thenumber of ex-
planatory variables, provided that the sample size is appropriate (e.g., at
least five observations per variable). While multiple estimates of an ef-
fect from runs or sessions can be directly fed into 3dMVM as input, the
user has to average them first in other packages before running the
group analysis (e.g., second level fixed-effect analysis in FSL), otherwise
the results might be invalid. By way of illustration, neither FSL nor SPM
can analyze the dataset presented in the Applications and results sec-
tion. In addition, their implementations are problematic when a
within-subject factor is involved in a data structure with two or more
factors due to the undifferentiated pairing for the F-statistic
denominator that can lead to higher FPR than intended. Specifically,
the SS for errors is adopted for all the omnibus F-statistic formulation,
thus only the F-statistics for the effects associated with the highest
order interaction among the within-subject factors are appropriately
constructed. For instance, in the presence of a within-subject factor,
inferences regarding a between-subjects factor are invalid (McLaren
et al., 2011); similarly, a two-way within-subject ANOVA, when an-
alyzed in SPM or FSL, would lead to inflated significance for the
main effect for both factors. In addition, testing for most post hoc hy-
potheses under the SPM and FSL implementations is equally prob-
lematic. More specifically, if a post hoc hypothesis does not involve
the highest order interaction among the within-subject factors, the
test would be invalid for the same reason as the omnibus F-tests. How-
ever, even for a post hoc hypothesis associated with the highest order
interaction among the within-subject factors, the test would still be in-
appropriate if the weights do not sum to zero (e.g., the positive condi-
tion in the control group in a two-way mixed ANOVA).

Furthermore, perfect sphericity is assumed in FSL, while SPM and
GLM Flex presume a uniform variance–covariance structure in the
“activated” regions, which is estimated through pooling, similar to the
strategy adopted in the SPM individual subject analysis with the pre-
sumption of same temporal correlation across the brain for the residual
time series (Glaser and Friston, 2007). First, the spatial homogeneity
presumption is unrelated to the formulation of F-statistics in UVT
(McLaren et al. 2011). Even if the whole brain shares the same correla-
tion structure, the denominator for the F-statistic of a between-subjects
factor, as well as the degrees of freedom, should still be properly speci-
fied, as shown in Appendix A. Additionally, the power (or sensitivity)
consideration in statistic selection should be based on a solid ground,
not at the sacrifice of proper FPR controllability. Furthermore, if the
sphericity violation is spatially homogeneous in the brain, this pooling
method offers an economical approach. However, our empirical data
suggested that such a presumption does not hold well (Fig. 4): substan-
tial variability in sphericity violation exists within and across regions. If
this violation in a region happens to be around the global average, the
correction method may work reasonably well for that region. However,
a cluster whose violation severity is much higher (mostly the warm
colors in Figs. 4B–D and the scatterplot in Fig. 5) would suffer from an
unnecessary penalty in power. On the other hand, those regions with
much milder violation (mostly the blue voxels in Figs. 4B–D and the
scatterplot in Fig. 5) would be unjustifiably rendered with inflated sig-
nificance. The voxels selected in SPM and GLM Flex for spatially averag-
ing of the variance–covariance structure are only limited to thosewhose
significance reaches a threshold (e.g., 0.001), but the estimated vari-
ance–covariance structure is then applied to all the data, causing further
biases across the whole brain. The biased statistical significance intro-
duced by this procedure may impact the characteristics of clusters
(e.g. peak, shape and size) as well as their survival for multiple testing
correction — without extensive testing (beyond the scope of this
paper) it is impossible to judge the import of this effect. Lastly, the
smoothing process of the variance–covariance structure among the se-
lected voxels is typically not accounted for in the FWE correction.

Our simulation results showed that the MVM approach is robust at
the voxel level in terms of FPR control and power achievement, and
the spatial extent of noise can be reasonably handled through the
FWE correction. In the majority of FMRI packages, spatial smoothing
during preprocessing is used to improve the signal-to-noise ratio, and
the smoothness of the noise is taken into account in the FWE correction.
Furthermore, paired t-tests (a special one-way within-subject ANOVA
with a 2 × 2 variance–covariance matrix) are performed voxel-wise
without taking into account the spatial structure in the brain among
all packages. One may argue that the amount of noise embedded in
the FMRI data justifies the pooling process under the presumption of
uniform correlation structure across the brain. As the correlation struc-
ture demonstrates the extent of synchronization across the factor levels
(e.g., a subject who responds stronger to the positive condition relative
to the group average may also have a higher response to the negative
and neutral conditions), the uniformity presumption boils down to
the following question: is the synchronization the same across the
whole brain? Even though our evidence of nonuniform correlation
(Fig. 5) could be discounted by the fact that FMRI data are noisy, and
it may well be nearly impossible to resolve with full certainty regarding
the uniformity presumption in the absence of a gold standard with real
data (How tomeasure the robustness? Are more identified blobs better
orworse?), there is no compelling evidence to suggest the validity of the
presumption. A large gap exists between the presumption and the fact
that FMRI data are noisy: noisy data do not translate to a uniform corre-
lation structure. We believe that the principle of parsimony (Occam's



1 Unless the directionality of a contrast is a priori known, the commonly practiced one-
tailed t-tests in the filed are problematic especially when both directions are considered
simultaneously in the same study. The Bonferroni method of correction for multiple com-
parisons with two simultaneous one-tailed t-tests is essentially the same as running a
two-tailed t-test. The software should not make a decision for the user in terms of one-
versus two-sided testing, nor should it preclude the user from the proper testing options.
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razor) favors amethodwith less stringent assumptions. In light of these
considerations, just as the voxel-wise estimates for the temporal cor-
relation at the individual level are more realistic for the residual time
series than a presumed uniformity, we argue that the voxel-wise
sphericity correction for UVT stands on firmer ground than one
with a stronger presumption that is difficult to validate with real or
simulated data (What spatial distribution should one assume about
the correlation structure in simulations?). The associated computa-
tional cost is well worth it, to ensure reasonably accurate statistical
inferences.

Current limitations of MVM

3dMVM is computationally inefficient compared to the SS method;
most analyses take half an hour or more. In addition, there are other lim-
itations. a) With the parsimonious assumption of sphericity, the univari-
ate GLM pays a low price in degrees of freedom through pooling the
variances across the levels of a within-subject factor. In contrast, those
levels are treated as separate response variables under MVMwith the re-
quirement (2) dictating that the total number of subjects be at least
greater than or equal to the total number of simultaneous and explanato-
ry variables. For example, suppose that the BOLD response for each of
three emotion conditions is modeled by 8 basis functions. With one
group of subjects, the MVM platform needs at least 3 × 8 + 1= 25 sub-
jects. Such a stringent requirement is not needed in the univariateGLM. b)
Within-subject quantitative covariates cannot be modeled in 3dMVM.
For example, suppose that one considers the average RT under each
of the three emotion conditions as an explanatory variable at the
group level. Such a scenario would have to be handled through
LME (Chen et al., 2013). c) Even though unequal numbers of subjects
are not an issue under MVM, a subject with missing data would have
to be abandoned in the analysis. For example, if one subject per-
formed positive and neutral, but not negative, tasks, the subject's
available data could not be utilized with MVM but can be used with
LME (Chen et al., 2013) or through data imputation. d) 3dMVM cannot
handle LME models with sophisticated hierarchical data structures
such as subjects of monozygotic or dizygotic twins, siblings, or
parents from multiple families (Chen et al., 2013).

What if a cluster fails to survive rigorous corrections?

There are strong indications that a large portion of activations are
likely unidentified at the individual subject level due to the lack of
power (Gonzalez-Castillo et al., 2012). The detection failure (false
negative rate) at the group level would probably be equally high, if
not higher. Even though most scientific investigations place a heavily-
lopsided emphasis on the FPR controllability, the sensitivity or power
is the primary focus under some circumstances, such as pre-surgical
detection where the efficiency is usually less than 10% (Button et al.,
2013). Several possibilities may lead to a cluster not achieving the de-
sired significance at the group level under a rigorous procedure: a) To
reach a specific power level, a huge number of subjects are usually
required, which most studies lack due to financial and/or time costs;
b) Spatial alignment is composed of multiple steps including cross-TR,
cross-session, cross-modality and cross-subject components, increasing
the chance of misalignment. Suboptimal or even erroneous alignment
procedure surely would have a big impact on the power performance
at the group level; c) Variations in response magnitude or signal-to-
noise ratio across regions as well as variations in spatial extent (region
size) may lead to different efficiency in activation detection across
regions. Compared to their larger counterparts, intrinsically small re-
sponse magnitudes or small regions (e.g., the amygdala) require a
higher significance level to survive the multiple testing correction,
which may not be always tenable. The small volume correction (SVC)
method is not always a legitimate solution, especially when other re-
gions are of interest at the same time. d) If a two-tailed test, when
appropriate, is strictly performed instead of two one-tailed tests,1 or if
the corrections for both multiple testings of the same hypothesis and
multiple comparisons of different hypotheses are rigorously executed
at the same time, many studies would face the power deficiency issue.

Similarly, a region without sphericity correction (e.g., the cluster at
the left inferior parietal lobule of Fig. 4D and UVT-UC in Fig. 3A) may
survive the FWE correctionwhile those tests under sphericity correction
(UVT-SC, HT, and MVT-WS in Fig. 3A) may fail. In other words, the
investigator could face a difficult situation between two choices: a sta-
tistically rigorous approach leads to results that fail to reach the
cluster-level significance, and another approach with invalid presump-
tion (uniform or perfect sphericity) renders easy result reporting. We
recommend that the investigator perform the appropriate and rigorous
correction, and in the meantime consider the less rigorous results. If
clusters that do not survive rigorous corrections do agree with prior
evidence (particularly from other modalities) or have substantial effect
sizes (e.g., in percent signal change), then the results can be reported
with the caveat that they would not survive the proper correction.
Such results are still of suggestive value and provide a benchmark for
future confirmation. In contrast to the omnipresence, over-obsession
and distorted impression of lopsided focus on statistic values only
(e.g., color-coded blobs of t-values) in the field, the responsemagnitude
should be presented, providing a solid ground for cross-region compar-
isons, cross-examinations, replicability, power analysis, and meta
analysis across studies (Sullivan and Feinn, 2012). Our suggestion of
reporting effect magnitudes is alignedwith and complementary to a re-
cent proposal to avoid the misinterpretations of significance maps
(Engel and Burton, 2013). For example, as manifested in Fig. 3B, Voxel
5 in the left inferior parietal lobule of Fig. 4D and Fig. 3A was
statistically significant only under UVT-UC at a p-value of 0.0036, mar-
ginally significant under UVT-SC (p = 0.057), and not significant
under MVT-WS (p = 0.40). The cluster where Voxel 5 resided had a
spatial extent of 155 voxels (6646 mm3) at the voxel-wise significance
level of 0.05, and it would not survive an FWE correction at the whole
brain level based on Monte Carlo simulations, which requires a min-
imum cluster size of 247 voxels (10,590 mm3) with an FWHM of
10 mm. One could easily dismiss the reliability of the cluster purely
based on the stringent statistical thresholding as well as the fact that sphe-
ricity correctionwasnot performed.However, if one examines the substan-
tial effect magnitude and the similar profiles and patterns with other
regions (Fig. 3C), it is hard to fully deny the suggestive value of reporting
the cluster together with its effect sizes and profiles.
Conclusion

TheMVM scheme provides a unified and inclusive platform that en-
ables us to offer a comprehensive alternative to univariate GLMtypically
encountered in neuroimaging group analysis with four tests: within-
subject multivariate testing, univariate testing with and without sphe-
ricity correction, and hybrid testing. Our implementation of MVM pro-
vides a unique program 3dMVM with modeling capabilities beyond the
current packages. Its interface is easy-to-use, and allows the user to
specify models, data structure and post hoc hypotheses through sym-
bolic representations. In addition to handling the traditional univariate
GLM, it can analyze the situationswhere there are a large number of ex-
planatory variables or when a quantitative covariate is involved in the
presence of one or more within-subject factors. As the severity of sphe-
ricity violation is usually inhomogeneous across the brain, 3dMVM offers
a rigorous correction method at the voxel level.
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Appendix A. UVM approach to AN(C)OVA through GLM

The univariate modeling (UVM) approach for AN(C)OVA or GLM in-
volves one response variable, which is the brain response magnitude in
the context of neuroimaging data analysis. Suppose that one is interest-
ed in teasing apart the effects on the BOLD response among q quantita-
tive covariates, one between-subjects factor A, and one within-subject
factor B. The relevant effects can be formulated as a cell means model,

βi jð Þk ¼
Xq
h¼1

αhxi jð Þh þ α Að Þ
j þ α Bð Þ

k þ α ABð Þ
jk þ bi jð Þ þ δi jð Þk; ð6Þ

where βi(j)k is the ith subject's effect estimate (e.g., BOLD response) at
the jth level (group) of factor A and kth level of factor B, xi( j)h and αh

are the ith subject's value of the hth explanatory variable and its associ-
ated group effect, αj

(A), αk
(B), and αjk

(AB) are respectively the fixed effect at
the jth level of factor A, the fixed effect at the kth level of factor B, and
their interaction effect, bi(j) is a random effect term, indicating the devi-
ation of the ith subject at the jth level of factor A from all the fixed ef-
fects, and δi( j)k represents the random error associated with the ith
subject at the jth level of factor A and the kth level of factor B. The
index notation i(j) emphasizes that each subject is nested within a spe-
cific group. For simplicity, we assume a balanced design with equal
number of subjects across groups. i = 1, 2,…, n; j = 1, 2,…, a; k = 1,
2,…, b.

Subjects in the model (6) are sometimes considered the levels of a
random factor S. There are no random effects associated with those
between-subjects variables (factors or quantitative measures) because
each subject takes only one value for each such explanatory variable.
In contrast, each subject is measured as many times as the number of
levels for each within-subject factor; therefore, the random term, bi(j),
indicates the deviation of the ith subject from the respective fixed effects,
∑ h = 1

q αhxi(j)h, αj
(A), and αk

(AB). It is noteworthy that no direct random
effect is included for αk

(B) because such an interaction effect between fac-
tor B and subjects S cannot be differentiated from the residual term δi(j)k,
unless there are multiple measures from each combination.

Without the presence of quantitative covariates (q=1and xi(j)1=1),
the model (6) is traditionally called a mixed factorial two-way ANOVA.
To obtain the F-statistic for each fixed effect in the ANOVA framework,
one pairs an appropriate variance source as numerator with another as
denominator. Each variance source can be explicitly expressed as the
mean squares (MS), which is the sum of squares (SS) for the errors asso-
ciated with each fixed effect, adjusted by their respective degrees of free-
dom. More specifically, the F-statistics for main effects of factors A and B
and their interaction in amixed factorial two-way ANOVA ( (6) with q=
1) can be constructed as (Neter et al., 1996)

Fa−1;a n−1ð Þ Að Þ ¼ MSA
MSS Að Þ ;

Fb−1;a b−1ð Þ n−1ð Þ Bð Þ ¼ MSB
MSBS Að Þ ;

F a−1ð Þ b−1ð Þ;a b−1ð Þ n−1ð Þ ABð Þ ¼ MSAB
MSBS Að Þ ;

ð7Þ
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In the absence of multiple measures from each combination,
MSBS(A) is the same as MSE, the mean squares of the errors. The nice
feature about the explicit expression of the MS terms is that they can
be numerically hard-coded into a program through the summation of
data and their squares respectively, leading to highly efficient computa-
tions involving only simple and direct SS terms. This scheme has been
adopted into the programs 3dANOVA, 3dANOVA2, 3dANOVA3, and
GroupAna in AFNI, and their runtime for FMRI group analysis is typically
in seconds. For example, a mixed factorial two-way ANOVA can be ana-
lyzed with 3dANOVA3-type 5.

However, the limitations for the direct computation of SS terms are
quite obvious. This calculation requires a rigid data structure, and can-
not deal with an unbalanced design (unequal numbers of subjects
across groups) or missing data. Any quantitative covariates cannot be
analyzed under the framework either. The number of factors that can
be incorporated in the model is programatically limited. To expand
the applicability of the ANOVA platform, one can transform the cell
means model (6) into a regression counterpart in which an effect
(fixed or random) for a categorical variable is typically dummy coded
in the model (or design) matrix. For the convenience of interpretation,
we choose effect coding (sum-to-zero or orthogonal contrast) in which
the reference (or base) level is set to −1 so that each level other than
the reference takes 1 in its associated regressor and 0 otherwise. The in-
tercept α1 is associated with xi(j)1 = 1; when a quantitative covariate is
present, α1 illustrates the effect associated with the center value of the
variable. Furthermore, α1 can be interpreted as the average effect across
the factor levels including subjects. Each other regression coefficient,
αj
(A) or bi(j), reveals the corresponding effect relative to the group

average, thus effect coding is also called deviation coding. For example,
the ANCOVA model (6) can be represented and extended to a GLM or
Gauss–Markov setup,

b ¼ Xaþ d; ð9Þ

where b is the stacking of all the response variable values. X is assumed
of full column rank, and its columns are associated with two categories.
First, they include the regressors for the fixed effects. For example, the
ANCOVA model (6) can be expressed in (9) with the fixed-effects
columns in X coded by intercept (xi(j)1 = 1), quantitative covariates
xi(j)h (h = 2, 3,…q), m − 1 columns for the M groups (levels of
factor A), l − 1 columns for the l levels of within-subject factor B,
(m − 1)(l − 1) columns for the interaction between factors A and
B. Secondly, they may contain the regressors for the random effects:
each group is represented through effect coding with as many as the
number of subjects in that group minus 1. d is the stacking of error
terms that are confounded with the random effects of interaction be-
tween factor B and subjects. Another natural extension is that the
GLM formulation (9) can be expressed as a special case of LME
model (Chen et al., 2013).

Instead of direct computations in the cell means model (6), each SS
term can be obtained by solving the full GLM (9) through ordinary least
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squares (OLS) against the respective reduced model. Specifically, the SS
term for the errors for the full GLM (9) is expressed as

SSE ¼ bT In−Pð Þb ð10Þ

whereP=X(XTX)−1XT is the orthogonal projectionmatrix of b onto the
space spanned by the columns of X, and In is an identity matrix of size
n × n. SSE in (10) characterizes the data variability in the L2-space
that cannot be accounted for by the explanatory variables (or the
columns of X) in the full model. When the columns associated with a
specific effect (e.g., factor A) are removed from X, the resultant SSE for
the reduced (or restricted) model would be higher than the one from
the full model, and the incremental (or marginal) SSE captures the con-
tribution in SS attributable to the corresponding effect (e.g., factor A).
That is, each of the SS terms (e.g., SSA, SSB, SSAB, and SSS(A)) can be com-
puted using (10) but with the coding columns (e.g., for A, B, AB, and S
respectively) removed from X and then subtracting the SSE for the full
model. Such computations in (10) are apparently not as efficient as
the direct formulas ( (8) in Appendix A), and thus the GLM runtime is
usually in the order of minutes or longer. However, one advantage of
GLM over the direct SS computations is the availability of modeling un-
balanced designs. It is of note that, with equal numbers of subjects
across groups and with no missing data, model regressors are orthogo-
nal, and the additivity of the SS terms (8) holds for themodel (6); that
is, the total SS equals the sumof all individual SS terms. Equivalently, the
additivity is translated to the orthogonality of the regressors in the GLM
(9). An unbalanced data structure (as is the case with missing data)
leads to the loss of orthogonality, and the additivity of the SS terms is
broken, leading to the sensitivity of the SS terms and thus the F-
statistics to the variable orders in themodel. This is the source of diverse
and controversial adoption of the various schemes: sequential, hierar-
chical or partially sequential, and marginal SS computations, also
known as types I, II, and III respectively. A second advantage is that
quantitative covariates can be modeled in the absence of within-
subject factors under the GLM framework, and (9) reduces to multiple
regression or ANCOVA. Within the AFNI package, this is the approach
adopted in programs such as 3dttest++ and 3dRegAna. The third ad-
vantage of GLM is the flexible choice of explanatory variables and
their interactions. For example, if the highest order interaction in the
model is deemed nonexistent, it can be removed from the model. The
downside of the flexibility is that, similar to the situation of unbalanced
design, it leads to the loss of additivity and orthogonality of the SS terms.
In contrast, ANOVA is rigid in the sense that all main effects and interac-
tions have to be included in themodel and computation even if some ef-
fects are deemed not present.

For a two-way mixed factorial ANOVA without multiple mea-
sures (cf. (6) with q = 1 and xi(j)1 = 1), the denominator for the
F-statistics of B and AB is the mean squares of errors (MSE), which can
be directly computed as in (10). However, the proper denominator
for the F-statistic of the between-subjects factor A is not MSE but
MSS(A). Mistakenly using MSE instead of MSS(A) as the denominator
creates inflated significance for factor A as clearly demonstrated by
McLaren et al. (2011). Such an artificial inflation also occurs when
making a post hoc inference for the effect of a specific factor level or
the linear combination of multiple levels when their weights do not
add up to zero. As the number of within-subject factors increases,
each extra factor requires a separate model with unique random effects
and separate variance partitioning. Consequentially the pairing for the
denominators of F-statistics becomes numerically tedious and even
unwieldy for both the direct SS computations and the GLM scheme. It
is this challenge that leads to the upper bound of four within-subject
factors in the AFNI ANOVA suite. For GLM implementations, only the
Matlab package GLM Flex allows for more than one within-subject
factor with the capability of modeling up to five fixed-effects variables,
and properly handles omnibus testing for between-subjects factors as
well as post hoc inferences.
As the complexities of FMRI experiment design and the resultant
group analysis deepen, the limitation on the number of variables will
become paramount. Another challenge under the UVM platform (both
direct SS computations and GLM) is that quantitative covariates cannot
be directly modeled in the presence of a within-subject factor. Further-
more, whenever there aremore than two levels for awithin-subject fac-
tor, the F-statistics for the main and interaction effects are by default
constructed under the sphericity assumption for the variance–covari-
ancematrix and thus inflatedwhen the assumption is severely violated.
No correction is currently provided in the AFNI ANOVA suite or in FSL.
SPM and GLM Flex deal with the issue by estimating the variance–co-
variancematrix under the assumption that all “activated” voxels and re-
gions (e.g., under the voxel-wise significance of 0.001) share the same
correlation structure. Such an assumptionwould only hold if no hetero-
geneity exists across voxels and regions, andmay become questionable
in reality. These limitations are some of themotivations that lead to our
exploration of the MVM approach for FMRI group analysis.

Appendix B. MVM under a constraint and the associated testing
statistics

Just as in univariate GLM, the least squares estimates (LSE) for A and
E in the MVM system (1) are (Rencher and Christensen, 2012)

Â ¼ XTX
� �−1

XTB;

Σ̂ ¼ 1
n−q

B−XÂ
� �T

B−XÂ
� �

¼ 1
n−q

BTB−Â
TXTB

� �
¼ Q

n−q
;

ð11Þ

where the quadratic form Q ¼ BT I−Pð ÞB ¼ BT I−X XTX
� �−1

XT
� �

B ¼

BTB−ÂTXTB is the counterpart of residual sum of squares (RSS) in
UVM, and also paralleling is that P=X(XTX)−1XT is the orthogonal pro-
jection matrix that is symmetric and idempotent. In other words, P
projects Rn onto the space spanned by the columns of the designmatrix
X: PB ¼ XÂ, and P(I − P) = 0.

To solve theMVM (1) under the constraint (3), we adopt a two-step
procedure, which also demonstrates intuitively the transformation role
of R in (3). First, we consider transforming the response data B in the
original MVM system (1) through BR = BR, and solve a new MVM
framework,

BR ¼ XAR þ ER: ð12Þ

The resultant LSE solutions are

ÂR ¼ XTX
� �−1

XTBR ¼ ÂR;

Σ̂R ¼ 1
n−q

BR
TBR−ÂR

T
XTBRÞ ¼

1
n−q

RT BTB−Â
T
XTB

� �
R ¼ RT Σ̂R:

�
ð13Þ

The original GLT (3) now serves as a constraint or general linear hy-
pothesis,

LAR ¼ 0; ð14Þ

for the new MVM (12). Following the same algebraic operations as in
univariate GLM (Seber, 2008), we obtain the LSE solutions for the
MVM system (12) under the constraint ( 14),

Â
� ¼ ÂR− XTX

� �−1
LT L XTX

� �−1
LT

� �
LÂR;

Σ̂
� ¼ Σ̂R þ 1

u
LÂR

� �T
L XTX
� �−1

LT
� �−1

LÂR:

ð15Þ
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It can be further shown (Seber, 1984) that, under the hypothe-
sis (3), the SSP matrices for the hypothesis and errors are
respectively

H ¼ LÂR
� �T

L XTX
� �−1

LT
� �−1

LÂR
� �

� Wv u;RTΣR
� �

;

E ¼ RT BTB−Â
T
XTB

� �
R ¼ n−qð ÞRT Σ̂R � Wv n−q;RT Σ̂R

� �
;

where Wv(k, Δ) denotes a v-dimensional Wishart distribution with k
degrees of freedom and parameter matrix Δ, a generalized version of
χ2 (or more generally Γ) distribution. The diagonals of H and E are the
SS terms for the hypothesis and errors respectively for the traditional
univariate tests. An intuitive connection here based on the transformed
system (12) is that H corresponds to the incremental variance–co-
variance matrix in (15) relative to (13) while E is associated with
Σ̂R in (13).

Four versions of testing statistics (Rencher and Christensen, 2012)
are typically adopted for the hypothesis (3) through the eigenvalues
λ1, λ2,…, λr of HE−1,

det Eð Þ
det H þ Eð Þ ¼ ∏

r

l¼1

1
1þ λl

; Wilks0sλ;

tr H H þ Eð Þ−1
� �

¼
Xr
l¼1

λl

1þ λl
; Pillai–Bartletttrace;

tr HE−1
� �

¼
Xr
l¼1

λl; Lawley–Hotellingtrace;

max
r

l¼1
λl; Roy0s largestroot;

where det and tr are the determinant and trace functions that summa-
rize the sum of squares and the shared variances among the response
variables into a scalar, often referred to as generalized sample vari-
ance. The Lawley–Hotelling trace can be viewed as the L1-norm of
the eigenvalue vector or generalized entropy index GE(1). Roy's larg-
est root is the L∞-norm of the eigenvalue vector, GE(∞), the spectral or
L2-norm ∥ HE−1 ∥ 2. Wilks' λ is GE(−1) on (1 + λ1, 1 + λ2,…, 1 + λr)
up to a monotone transformation each.

The four multivariate testing statistics are exact tests, but are not
equivalent with each other in general. However, when only two groups
of subjects are involved, there is only one eigenvalue, so they become
equivalent and reduce toHotelling's T2. For easier thresholding of signif-
icance testing, they can be approximated by F-statistic. As indicators of
relationship between explanatory and response variables, they differ
slightly in their approaches to aggregating the variabilities across the re-
sponse variables accounted for by the explanatory variables or under
(3). Roy's largest root, as the union–interaction principle test, only con-
siders the largest effect on the response variables (or largest loading on
the associated eigenvector). The other three are compound tests that in-
volve all the response variables. Equivalent to the likelihood ratio test,
Wilks's λ is the most intuitively interpretable with a range between
0 and 1. For example, a small Wilks's λ indicates greater accountabil-
ity. Specifically, 0 (or 1) means a perfect (or no) relationship be-
tween the explanatory and the response variables. And 1 minus
Wilks's λ is the multivariate counterpart of coefficient of determina-
tion R2 in univariate GLM, showing the proportion of data variability
in the response variables that is accounted for by the explanatory
variables. The Pillai–Bartlett trace sums over the variances that can
be explained by the discriminant variables (or the greatest separa-
tion of the explanatory variables), and is considered the most reli-
able among the four and provides the best protection against false
positives when the sample size is relatively small. The Lawley–
Hotelling trace represents the most significant linear combination
of the response variables. When the sample is reasonably large, the
latter three MVT statistics render similar results.

When R = I, the general linear hypothesis (3) corresponds to the
conventional multivariate testing (Appendix B). In addition, the
eigenvectors associated with λ1, λ2,…, λr are orthogonal with each
other, and are the linear combinations of the response variables. Each ei-
genvalue indicates the amount of variability that can be accounted for
by the associated eigenvector.

Appendix C. Examples of formulating GLT matrices

We start with two special scenarios that are the multivariate ver-
sions of one- and two-sample t-tests. In the first case of multivariate
one-sample test, each subject is measured in Rm, X = 1n × 1, and A is
of size 1 ×m. Anm-variate analog of univariate one-sample hypothesis
can be expressed under (3) as,

H0 : α1 ¼ 0;α2 ¼ 0;…;αm ¼ 0; ð16aÞ

L1 ¼ 1;R1 ¼ Im: ð16bÞ

This is a one-sample Hotelling's T2-test, the multivariate analog of
the univariate one-sample t-test. The null hypothesis (16a) states that
the group centroid is at the origin of Rm.

In the multivariate two-sample case, X and A are of size n × 2 and
2 × m respectively. With effect coding, the hypothesis for group
comparison in Rm and its testing formulation under (3) are
respectively,

H0 : α11 ¼ α21;α12 ¼ α22;…;α1m ¼ α2m; ð17aÞ

L2 ¼ 0;1ð Þ;R2 ¼ Im: ð17bÞ

The hypothesis (17a) compares the centroid in Rm between the
groups, and its associated test is a two-sample Hotelling's T2, the multi-
variate analog of theunivariate two sample t-test. Onemay also perform
testing for each group's effect with respectively

L3 ¼ 1;1ð Þ;R3 ¼ Im;
L4 ¼ 1;−1ð Þ;R4 ¼ Im:

Parallel to (16a) is the factor main effect in a one-way within-
subject ANOVA that can be formulated with the following hypothe-
sis,

H0 : α1 ¼ α2 ¼ … ¼ αm; ð18aÞ

L5 ¼ 1;R5 ¼ Im�1
−11� m−1ð Þ

� �
: ð18bÞ

Notice that the response transformation matrix R5 is essentially the
effect coding matrix for the within-subject factor under UVM with the
last level as the reference or base. This representation also embodies
the transformation from the centroid hypothesis (16a) to the main ef-
fect hypothesis (18a). Alternatively the namesake for R5 has another
perspective: (18a) can be formulated by transforming the originalm re-
sponse variables tom− 1 variables with each of the firstm− 1 response
variables subtracting them-th variable. In other words, after the transfor-
mation, (18a) under the new MVM with m − 1 response variables be-
comes a conventional multivariate hypothesis with R = Im − 1 for an
Rm − 1 centroid: (α1 − αm, α2 − αm,…, αm − 1 − αm) = 01× (m − 1).

For a two-way between-subjects ANOVA, the response transforma-
tion matrix is a scalar, R= 1, and the multivariate model reduces to a
UVM system. On the other hand, the hypothesis of interest parallel to
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(17a) is the interaction between the factor and the two groups in the
mixed factorial two-way ANOVA,

H0 : α11−α21 ¼ α12−α22 ¼ … ¼ α1m−α2m;
L6 ¼ 0;1ð Þ;R6 ¼ R5:

We can similarly formulate the main effect hypothesis for the within-
subject factor (H0: α⋅1 = α⋅2 =…= α⋅m) and for the groups (H0: α1⋅ =
α2⋅) through L= (1, 0), R= R5 and L= (0, 1), R= 1m × 1 respectively.
The center dot (⋅) here in the effect parameter index notations indicates
the averaging or collapsing among the levels of the corresponding
factor.

More generaly, for amixed factorial two-way ANOVA (model (1)with
q=1) with between-subjects factor A of a levels and within-subject fac-
tor B of b levels, themain effects for factorsA and B and their interaction A:
B can be tested under MVM through (3) with the following

LA ¼ 0 a−1ð Þ�1 I a−1ð Þ� a−1ð Þ
	 


;RA ¼ 1 b−1ð Þ�1;

LB ¼ 1 01� a−1ð Þ
	 


;RB ¼ R Bð Þ
;

LA:B ¼ LA;RA:B ¼ RðBÞ
;

whereR Bð Þ ¼ Ib−1
−11� b−1ð Þ

� �
is the effect codingmatrix for factor B. And the

F-statistics from the above GLTs are equivalent to (7) if the data structure
is balanced.

For a factorial two-waywithin-subject ANOVAwith factors A and B of
a and b levels respectively, one can similarly analyze the data under the
hypothesis (3) with the following,

LA ¼ 1;RA ¼ R Að Þ ⊗ 1b−1;

LB ¼ 1;RB ¼ 1b−1 ⊗R Bð Þ
;

LA:B ¼ 1;RA:B ¼ R Að Þ ⊗ R Bð Þ
;

where R Að Þ ¼ Ia−1
−11� a−1ð Þ

� �
and RA : B = R(A) ⊗ R(B) are the effect coding

matrices for factor A and interaction A : B respectively.
Appendix E. Interface for running 3dMVM

Program 3dMVM is run, for example, on a tcsh terminal with a command
between the variables a and bmeans a ∗ b= a+ b+ a : b, while + and : r
programs, the specific usage and the options can be found in command 3d

3dMVM -prefix OutputFile -jobs 8

-bsVars ’Group*Age’ -wsVars

-qVars ’Age’ -SC

⋯
-dataTabel

Subj Group Age Cond

S1 Child 2.3 Con

S1 Child 2.3 Con

⋯
S1 Child 2.3 Con

⋯
S50 Adult -1.9 Inc

S50 Adult -1.9 Inc

⋯
S50 Adult -1.9 Inc
Appendix D. The Mauchly test and sphericity corrections

The Mauchly test for sphericity verifies whether Σ in the MVM
system (1) is proportional to identity matrix, and can be performed
through (Timm, 2002)

W ¼
det eE� �
tr eE� �

=v
h iv ;

where eE ¼ eRT
EeR, eR is an orthogonormal matrix whose columns are

normalized orthogonal columns of the response transformation
matrix R in the hypothesis formulation (3), E is the SSP matrix for
the errors, and v is the number of columns in R. W is close to 1 if eE
is approximately a diagonal matrix, and− lnW can be approximated
by χ2-distribution with a scaling factor. Furthermore, the Green-
house–Geisser and Huynh–Feldt measures of sphericity can be com-
puted as well under UVM (Keselman et al., 2001),

ϵGG ¼
tr2 eE� �

vtr eETeE� � ;
ϵHF ¼ min

v n−qþ 1ð ÞϵGG−2
v n−qð Þ−v2ϵGG

;1
� �

;

where 1/v ≤ ϵGG ≤ ϵHF ≤ 1 and perfect sphericity corresponds to the
upper bound ϵGG = ϵHF = 1 and the lower bound instantiates the
case when there is one dominating eigenvalue (thus the data can be ap-
proximated in one-dimension). The correction for sphericity violation
can be performed throughmultiplying both the numerator and denom-
inator degrees of freedom in the original F-statistic by either ϵGG or ϵHF.
The Greenhouse–Geisser measure tends to be over-conservative when
the violation is not severewhile theHuynh–Feldtmodification is too lib-
eral when sphericity is significantly violated.
script as the following. As in the notional convention in R, the operator ∗
epresent addition and interaction among the variables. As in most AFNI
MVM -help at the terminal.

\

’Cond*Component’ \

-MV -num_glt 40 \

\

Component InputFile \

tent1 S1_Con_t1+tlrc \

tent2 S1_Con_t2+tlrc \

tent10 S1_Con_t10+tlrc \

tent1 S50_Con_t1+tlrc \

tent2 S50_Con_t2+tlrc \

tent10 S50_Con_t10+tlrc
Appendix F. List of acronyms used in the paper

AN(C)OVA
analysis of (co)variance
FPR false positive rate
FWE family-wise error
GLM general linear model
GLT general linear testing
HDR hemodynamic response
HT hybrid testing defined in (5)
LSE least squares estimate
MAN(C)OVA multivariate analysis of (co)variance
MLE linear mixed-effects modeling
MSE mean squares of errors
MVM multivariate modeling
MVT multivariate testing
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MVT-WS multivariate testing for a within-subject effect
SS sum of squares
SSP sum of squares and product
SSPE sum of squares and product for errors
SSPH sum of squares and product for the hypothesis
UVM univariate modeling
UVT univariate testing
UVT-SC univariate testing with sphericity correction
UVT-UC univariate testing with sphericity uncorrected
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